

A Case Study on Setting Up Pipeline Integrity Management System for a Medium Enterprise Operator

Muhammad Qasim Nishant Sasi Philip Inessa Yablonskikh

Process & Pipeline Services BHGE

21 November, 2018

© 2017 Baker Hughes, a GE company, LLC - All rights reserved.

Confidential. Not to be copied, distributed, or reproduced without prior approval.

BHGE's role in the Integrity Management Process

PIMS Management systems...

- PIMS Manuals
- PVi7 Software implementation
- Data commissioning

Pipeline Operators

PIMS Implementation Scenarios

Confidential. Not to be copied, distributed, or reproduced without prior approval.

Case Study: Medium Pipeline Network + Low PIMS Budget

Reasons for change Before

- Operator lacked process and tools for PIMS and maintained a prescriptive integrity management approach with people for data management, inspection strategy and performance monitoring.
- There were no formal pipeline integrity management procedures in place, with no tools available to execute engineering assessments (i.e. risk assessment) for pipelines.

After

- Successful development and deployment of PIMS
- Knowledge transfer
- Risk assessment and Integrity Management Plan
- Shift in culture

PIMS Definition*

- A framework that translates company and industry best practices into specific business processes
- Built around the plan-do-review cycle
- Achieved through full integration and alignment of all individual company management systems

*Management System Approach to Pipeline Integrity. I.Colquhoun (GE), C. Calvi (COPI), H. MacPherson (GE). IPC 2006-10531

Typical PIMS Framework

Building Integrity Management Infrastructure

PIMS Management System comprises...

... the *process*, workflows & integrity targets to drive Pipeline Integrity Management, via the right <u>people</u> in the right org structure using the right tools software & database <u>tools</u>

PIMS Development & Implementation

End Objective – Best in Class

Confidential. Not to be copied, distributed, or reproduced without prior approval.

PIMS Development and Implementation

- 1. PIMS Gap Analysis
- Preparation of PIMS Manual and Procedures Including: 2.
 - Inspection and Monitoring Procedure
 - **Anomaly Management Procedure**
 - **Prevention and Mitigation Procedure**
- 3. PIMS Implementation

BAK

- Risk Assessment
 - Data Collection
 - Risk Workshop
 - Identification of threats based on risk assessment
- Integrity Management Planning Ο
- Performance Monitoring and Reporting

12

PIMS Implementation

Gap Analysis

- Review existing practices
- Capture best practices
- Identify operational constraints
- Recommend action plan to close gaps

PIMS Manual and Procedures

- PIMS Procedures
 - -Threat Identification, RA & IMP
 - -Inspection & Monitoring
 - -Anomaly Management
 - -Prevention & Mitigation

Small Pipeline Network + Low PIMS Budget PIMS Implementation

Data Collection

- Documents/Data gap analysis
- Data gaps filled by:
 - Engineering judgments discussed and agreed
 - Post workshop data collection
- Input data for risk assessment provided as part of deliverables in an organized manner

Risk Modelling Workshop

- Familiarize Operator with BHGE Risk Model
- Identify and review the threats to the pipelines
- Discuss and review the available data and address data gaps.
- Discuss and agree pipeline segmentation criteria and RAM for presentation of risk results.

Small Pipeline Network + Low PIMS Budget PIMS Implementation

Risk Assessment

- A comprehensive semi-quantitative risk assessment was performed.
- These risk results were presented in the form of a risk matrix as per operator's RAM and definitions to identify the Risk category (High, Medium or Low).

Integrity Management Plan

- Mitigation measures for the dominant threats that drive risk were identified and used to re-calculate risk.
- Post mitigation risk results were presented in the operator's risk matrix to show the residual risk following mitigation actions.

Performance & Monitoring Reporting Guideline

- Evaluation of the on-going effectiveness and suitability of the PIMS by monitoring results and trends for KPI's
- Proactively implement improvements.

21 November, 2018 16 Confidential. Not to be copied, distributed, or reproduced without prior approval.

Pipeline Integrity Management Process

Quantitative Risk Assessment (QRA)

Quantitative Risk model...

... the risk model that forms the core is integrity management functionality is *quantitative*... it provides the benefits of quantitative risk using the same lower data intensity of semi-quantitative models

Risk drivers

- Keep people & environment safe
- Increase asset availability
- Maintain reputation

Key question

- Where & what risks to focus?
- What's my safety \$ exposure & environment?
- Will my spend reduce risk to ar acceptable level?

Quantitative? **PVi7 risk model**

- Most models are semiquantitative
- Quantitative models costly & data intensive

 Output has absolute meaning & tangibility

- Compare risk across pipelines, systems & threats
- Map H&S, finance & environment to common scale

... Semi-Quantitative: models can answer the questions of where do I spend and how

... Quantitative:

models are needed to answer how much should I spend, am I spending too much? Am I spending enough

... PVi7 is quantitative:

the model provides the benefits of quantitative risk without needing the data intensity and cost of typical quantitative models

Risk assessment and integrity management planning

BAKER

a GE company

Quantitative Risk Assessment

Solution for Medium Pipeline Network + Low PIMS Budget

H&S Flammable area Sum

H&S Toxic area

94 3 3 96 95 3 3 99

Risk Service

1		2			3		4			
BEG_MEASURI	END_MEA	SURE	IN_SE	RVICE	DATI	GEOLAY I	info			
0		1000	01/01/	1958		Onshore				
1000		2000	01/01/	1958		Onshore				
2000		1		2			3			1/
3000	BEG N	AEA:	END	MEA	DEP	THOFCO	ν			r .
4000		0		1000	a 0		-	1		
5000			1		2		3	4		_
6000		BEG_S	REASURE		EASURI 610	Natural Car		RepFluidTypeG	C3-C4	iype.
7000	2		1000		90	Natural Gas			03-04	
8000	3		2000	14	900	Natural Gas	s (sw	01-02	C3-C4	
9000	4	000	1	5000	0.6					
10000	-	000		5000			-1			
11000		000		7000			-			

Pipeline	Al	BLK0-14 22	BLK0-14 22	BLK0-14 22	BLK0-14 22
ManagedSegment	Al	BLK0-14 NS	BLK0-14 NS	BLK0-14 NS	BLK0-14 NS
Begin Pipeline Distance (m)	All	0	1048	2784	3205
End Pipeline Distance (m)	All	1048	2784	3205	7048
WallThickness (mm)	Multiple	21	21	21	21
OutsideDiameter (mm)	Multiple	558.8	558.8	558.8	558.8
Pressure (bar)	Multiple	4.5	4.5	4.5	4.5
SMYS (MPa)	Multiple	450	450	450	450

Data loading templates

BAKER HUGHES

input table

Macro to copy input table values into probability and consequence calculation sheets

yes yes yes na na na na yes		Copy Data into Calculation				
			Input		Calcula	tion
Attribu	Attribute		Row	Column	Row	Column
Pipe se	gment	t length	256	8	16	4
Pipe di	amete	r	8	8	17	4
Wall thi	ckness	5	7	8	18	4
Maximu	im ope	rating pressure	9	8	19	4
Maximu	im ope	erating temperature	136	8	20	4
Specifi	ed min	imum yield strength	10	8	21	4
Estimat	ed cor	rosion rate	65	8	22	4
HasMic	robial		101	8	23	4
HasAC	Induce	d	95	8	24	4
Haspre	viousE	CFailure	102	8	25	4
Disoling	- Pocit	lon	174	0	26	4

Maps, referencing input table fields to attributes used in calculation

1.14E-04

6.06E-06

1 21E-06

1.21E-04

1.14E-04

6.06E-06

1.21E-06

6.06E-05

5 70E-05

3.03E-06

6 06E-07

6.06E-05

5.70E-05

3.03E-06

6.06E-07

		1	External C		n Failure Model Onshor	e (Appendix 2A) Input data Calculation/look.up						
			ttribute			Value	Value	con				
			ocation onsh		e	Onshore	Onshore					
			caling factor			1.96E-05	1.96E-05	sh				
			telative proba			0.94	0.94	51				
			telative proba			0.05	0.05					
		F	telative proba	ibility for a n	ipture	OUTPUT		lat				
						Attribute						
			NPUT			Failure rate for	external corro	sion				
						Failure rate for	external corro	sion (small leak)				
		÷	ttribute			Failure rate for	external corro	sion (leak)				
Doport p	220	c !	Pipe segment			Failure rate for	external corro	sion (rupture)				
Report n	iap	5 <u>I</u>	hipe diameter			Failure probab	ility for externa	I corrosion				
-		IV.	Vall thickness		r	Failure probab	Failure probability for external corrosion (small					
Attribute	Row	Column	Report Ro	Report Co	re	Failure probab	ility for externa	I corrosion (leak)				
TOTAL_REL_TIME_R	87	6	3	161	rature	Failure probab	ility for externa	I corrosion (rupture)				
VOLUME_RELEASE_R operating	(88	3	3	164	rength	0.06858	0.06858					
Environmental Flammable area Max	(89	3	3	19		0.00000	0.00030					
Environmental Flammable area Sun	r 90	3	3	22								
Environmental Toxic area	91		3	25								
Financial Hazard area	92		3	90								
H&S Flammable area Max	93			93								

21 November, 2018 22 Confidential. Not to be copied, distributed, or reproduced without prior approval.

Probability, Consequence and Risk reports

HUGHE	5																
Pipeline	<i>u</i> - <i>y</i>	BAKER HUGHES)														
4		a GE company						BAKER	8								
asic Pipeline De	ntoils	Pipeline		_	39230_26	ŧ		HUGHES	Ĭ								
ngth (m)	120	Consequence of Failu	e Results -	Overn	iew			Pipeline	_0	_	43	9230_2	6E	_	ZC m	ch Natu	ral Gas
ometer (mm)	6	Basic Pineline Details	200.01						Diek Ar		ent Res	ulte . T	intal Ri	-k			
stall Year all thickness (mm)	1	(Longth (m) (Draw (tor (mn)) (Sporting Process ((tor))	65.4 92.7	General Pro-	duction, bpd April, bpd		Henedille	Basic Pipeline i			crit mea	unu - r		-		- ^	644
est IU Dote	054	Locution	Outers	Gas Thron	gipai, noochd		5+	Longth (m) (Tismutur (mm)		100.0	Operation Look Mate	al Statur		fearraian Fear	Gran Predaction		
inaged Segme	at Details	Managed Segment De	taile	Distances	an.			Install Year	_	1012	HADPON		_	128.8	Gar Threeshout.	marchi	
nageo segme	in Deans	No. Code Num 1 674224_216-P127 P1wh		- Decet	End	Longh		Well-thickness (mm)	_	7.54 Foderr	Operation OP = \$247	Processo	h-or)	52.7 18.00	COp cantont X m		1.000
No. Code 1 435230_20 2 435250_20 2 435250_20	Nome Flark	2 404039_246.0452 (Sravi 3 404039_148.0452 (Sravi		- 1963 - 1963	2100	- 10		Pipeline Service		Robert Gas	Frankastik		Vest	Hear .	Supply Cobinals		Ral Collins Jacobie
3 435250_20	Field	4 404039_344.0404 3x34x4 5 404039_346.0405 118x4 6 404039_346.0405 (118x4		3903 4903 1903	#100 \$000			Managed Segm	ent Det.	nits	Namue	is m			Conseque	nce Ca	tegory
		 40%236_318_0%27_1%dra 40%236_318_0%27_1%dra 	ration .	6.0410 T0410	Net			No. Code	Name		Share Lot	Ent	Longth		CougeryPlanet		
		1 404239,156,0424 89,000 1 404239,156,0424 Alexa 10 404239,146,0424 Alexa 10 404239,146,04240 Oracl	and	1992	100	1941		4790762498-	Plant Cratring		1000	2000	5683		tSnar Haderate		- 14
7 40000000	Valve station	11 MINUTE DIS. DOC. MILLION AND IN	*	1963 N.963	2010	- 94	1	3 000000	Field	_	2000	3900	1649		Plaine	1	-188
8 439230 26	Valve station E Fluer crossing Along road	th dividing bed repairing Print		TRUE	510				hidantic	1850	3900	4900	5689		Oritical	10	-1893
400200_20	Along road							5 and Course	Crawley		4300	\$990	1649		Constraable		10.0.3
0 40.2552200 MILIO	Crozzing	Consequence of Failu	ce Pratite					3 479279 010-	Tubusta	i	5900	5900 7900	1649		Georgeneer events		
1 400000,200	Crossing Along road							4 475676 618	River and	orina .	2000	1900	5649		Camperoor Address		all of Anlay
2 400000000	Flank	Manu	85	Fulue: Mede	ENY	Fuhre Nede	FIN	4 408/18-04*	Ater	-	8900		1649				
		PTan.4	Contractor	Lot	Plane	Lot	Phoe		Crmerics		9000	\$3006	5649				
suency of Fail	lure Profile (c	Crossing.	Columnation	Loak	Plant	Loak	Phase		Alen-pra-	ьő	5(493	19000	5649				
		(1).14	Constration	114	Hist	110	ferred	12 Child Life	Plant		19(68	12006	5649				
e	EC	Suffected means	Estativativa Estativativa		Plase	Loak	Picer Picer	Bisk of Failure	n								
	6.74E-10 0.0	(transing	Constraints	Low	Plase	Lot	College.	mox or ranore.									
ing	5.416-12 0.0	False et atlas	Construction	Look	Finer	Loak	Phane	News			Demisor				Demisson (Faller Finds	TeA of Fig	0.0444877
	2,295-11 0.0	River eventing	Colorization	Look	Plane	Lot	Nor	Plant	2.49	1-10	HD	Em	C+94	HS	LEAR		tion
mial zone	1490.43 0.0	Afangened Crossing	Constrainty Constrainty	Louis Louis	Hast	Lod. Lod	Húar Húar	Creating	1.21	6-15	HD	2.24	C+14	Há	LEAK:	15	inn
		discarged	Estatemphis	Low	Flag	Lot	Phier	Field	3.91	1-14	MD	5.98	+64	HS	LEAN		5.4
<u>3</u> *	4.828-11 0.8	Field	Congrouphic	Look	Hist	Lot	Phiar	Tedartrislanes Tellage	120	[+1	10	226	2484	H2 H3	LEAN: LEAN:		i forn
sing	9.606-12 0.1	Motes False node supersed.	the aluminant rel	have most	idonthicd for a	rack of the		Counting	2.50	C-84	HD	5.98	*66	HS	LEAK		5.0
e station	2.41E-00 0.0	The receipt shows in the	supervise the to	007.00000	consugninesse	screer the	Ad Assages	Telestation	1.21	E-#5	HD	2.24	ы	HG .	LEAK	15	inn
rorossing	190E-11 0.0							Altergrand	1.0		10	2.24		H1 H2	LEAN: LEAN:		in the second
groad	1568-7 0.0							Cravia	2.40	1-26	HD	324		HS	LEAK	- R.	then a
ling	7.096-00 0.0	L08047	-					Also-arged	2,41	C-16	HD	2.24	C+34	HS	LEAK	15	(Euro
groad	7.395-00 0.0	L002+06	<u>_</u>		\sim			Flant	7.48	£-96	HD	2.24	[+84	HE	LEAK		tim
8	1026-09 0.0	LINE-CA	47	7		r	r r	Risk Matrix - Te	etal Riss	ł					and a second second		1000000
the frequencies si	hown in this rep	L.000-42		ł.	hł.	ŧ.					."			····	<i>"</i> .		
		Lintr-00				H			on-dial								
		1 - Ja	1 J	1	p st	1	and owner		1PEsar								Halist
									2.Medare								LowFirk
								1	3 Majar								Hedon Rick
								8	40-04-0								HEARING &
									50.000	mphie			2			•	So gauge A Cares
											æ	41.47	4,114,	10.17	- 497		-

Risk Workshop

Risk Results Before (a) and after Mitigation (b)

- The threat that was found dominant was Weather and Outside Force in both offshore risers.
- The next threat in the pipeline was failure due to Incorrect Operations in start safety zone, main line and end safety zone.
- Mechanical Damage threat in the pipeline was driven by anchor handling.
- Internal Corrosion threat in the pipeline was demonstrated to be low.

(ye

21 November, 2018 24 Confidential. Not to be copied, distributed, or reproduced without prior approval.

Small Pipeline Network + Low PIMS Budget Conclusion

Pipeline integrity management system was implemented successfully with safety, quality and efficiency within the available resources.

Advantages over Typical PIMS supported by Database and Enterprise Software

- Low cost and staffing levels
- Risk assessment workshop instead of detailed software
- Stepwise approach to PIMS development made it easier for operator to adopt
- The decision to implement the developed PIMS with the support of consultant through a senior integrity engineer absorbed the initial surge of workload and roadblocks.

