

In-line Inspection Design

Assessment of Hydrogen Pipelines

Tod Barker, Senior Product Manager November 17, 2020

In-line Inspection Tool Design and Assessment of Hydrogen Pipelines

Subjects to be covered

- Hydrogen demand
- ILI of hydrogen pipelines
- Evaluation and testing
- Pipeline Operation
- Conclusion

HYDROGEN DEMAND

EUROPEAN AND GLOBAL MARKETS

TDW.

Hydrogen properties

- Smallest, lightest and most abundant element
- Predominately used for refining diesel and gasoline
- Extremely flammable

Europe Green Deal

Reduced methane

- Commitment to reduce methane by 2030
- Target of blending 10% hydrogen into methane pipelines by 2030

Source: European hydrogen backbone

U.S. demand for hydrogen

• Hydrogen supplied increased 145%

- New development U.S. pipeline projects planned
- 100 miles of additional hydrogen pipelines

https://www.chron.com/life/health/article/Air-Products-dedicates-world-s-largest-hydrogen-9453155.php#photo-11151456

ILI OF HYDROGEN PIPELINE

Background

Hydrogen is flammable gas

- DOT 192 regulations
- Pipeline must remain in continuous operation

ILI vendor partnership

R&D capabilities

Technology selection

Tool capability evaluation

MFL technology

- Magnets contact the steel pipe wall saturating the steel with magnetic flux
 - Sensors in between the poles measure magnetic field strength
 - Magnetic flux leakage increases where metal loss is present

Hydrogen embrittlement failure

- Environment:
 - Hydrogen, temperature, impurities
- Stress:
 - Geometry, load cycle frequency
- Material:
 - Composition, microstructure

Hydrogen compatibility testing

Initial material test results

Before

After

New hydrogen compatible ILI tool

Tool recovery

EVALUATION AND TESTING

Evaluation and Testing

Root cause evaluation

Materials:

- High strength steels
- Magnets
- Brushes
- Seals

Systems:

• Coupling

Plan

PDCA

Evaluation and Testing

Mechanical wear testing

PIPELINE OPERATION

Pipeline Operation

Second ILI run

Updated tool based on RCA

Different pipeline segment chosen

Pipeline Operation

Successful inspection

Tool launched and received without issue

- No mechanical damage
- Some overspeed

Pipeline Operation

TDW.

ILI run report data

- 61 miles in 100% H2
- 100% sensor data collected

LESSONS LEARNED & CONCLUSION

Lessons Learned

TDW

ILI in hydrogen is possible

- Fine product flow control is important
- Pipeline design has large affect on ILI passage ability

Partnership between operator and ILI vendor was key

H2 requires specific tool design

